Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways.
نویسندگان
چکیده
To survive starvation conditions, eukaryotes have developed an evolutionarily conserved process, termed autophagy, by which the vacuole/lysosome mediates the turnover and recycling of non-essential intracellular material for re-use in critical biosynthetic reactions. Morphological and biochemical studies in Saccharomyces cerevisiae have elucidated the basic steps and mechanisms of the autophagy pathway. Although it is a degradative process, autophagy shows substantial overlap with the biosynthetic cytoplasm to vacuole targeting (Cvt) pathway that delivers resident hydrolases to the vacuole. Recent molecular genetics analyses of mutants defective in autophagy and the Cvt pathway, apg, aut, and cvt, have begun to identify the protein machinery and provide a molecular resolution of the sequestration and import mechanism that are characteristic of these pathways. In this study, we have identified a novel protein, termed Apg2, required for both the Cvt and autophagy pathways as well as the specific degradation of peroxisomes. Apg2 is required for the formation and/or completion of cytosolic sequestering vesicles that are needed for vacuolar import through both the Cvt pathway and autophagy. Biochemical studies revealed that Apg2 is a peripheral membrane protein. Apg2 localizes to the previously identified perivacuolar compartment that contains Apg9, the only characterized integral membrane protein that is required for autophagosome/Cvt vesicle formation.
منابع مشابه
Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway.
Cvt19 is specifically required for the transport of resident vacuolar hydrolases that utilize the cytoplasm-to-vacuole targeting (Cvt) pathway. Autophagy (Apg) and pexophagy, processes that use the majority of the same protein components as the Cvt pathway, do not require Cvt19. Cvt19GFP is localized to punctate structures on or near the vacuole surface. Cvt19 is a peripheral membrane protein t...
متن کاملChapter 1 General introduction: Peroxisome homeostasis in Hansenula polymorpha
Peroxisomes are essential organelles in many eukaryotes. Until recently, the main focus of the investigations concerning this important organelle was to understand the biogenesis of the peroxisome (induction, proliferation and matrix protein import). However, when peroxisomes become redundant they are quickly degraded by highly selective processes known as pexophagy. The first molecular studies...
متن کاملCvt9/Gsa9 Functions in Sequestering Selective Cytosolic Cargo Destined for the Vacuole
Three overlapping pathways mediate the transport of cytoplasmic material to the vacuole in Saccharomyces cerevisiae. The cytoplasm to vacuole targeting (Cvt) pathway transports the vacuolar hydrolase, aminopeptidase I (API), whereas pexophagy mediates the delivery of excess peroxisomes for degradation. Both the Cvt and pexophagy pathways are selective processes that specifically recognize their...
متن کاملDelivery of proteins and organelles to the vacuole from the cytoplasm.
The vacuole/lysosome is a primary catabolic site in the eukaryotic cell. One implication of its cellular role is that delivery systems must exist to target both hydrolytic enzymes and substrates destined for degradation to this organelle. A number of nonclassical vacuolar targeting pathways that deliver degradative substrates and at least one resident enzyme from the cytosol to the vacuole have...
متن کاملThe Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways.
Mon1 and Ccz1 were identified from a gene deletion library as mutants defective in the vacuolar import of aminopeptidase I (Ape1) via the cytoplasm to vacuole targeting (Cvt) pathway. The mon1Delta and ccz1Delta strains also displayed defects in autophagy and pexophagy, degradative pathways that share protein machinery and mechanistic features with the biosynthetic Cvt pathway. Further analyses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 32 شماره
صفحات -
تاریخ انتشار 2001